Interaction of the quantized electromagnetic field with atoms in the presence of dispersing and absorbing dielectric bodies
نویسنده
چکیده
Interaction of the quantized electromagnetic field with atoms in the presence of dispersing and absorbing dielectric bodies Abstract A general theory of the interaction of the quantized electromagnetic field with atoms in the presence of dispersing and absorbing dielectric bodies of given Kramers–Kronig consistent permittivities is developed. It is based on a source-quantity representation of the electromagnetic field, in which the electromagnetic-field operators are expressed in terms of a continuous set of fundamental bosonic fields via the Green tensor of the classical problem. Introducing scalar and vector potentials, the formalism is extended in order to include in the theory the interaction of the quantized electromagnetic field with additional atoms. Both the minimal-coupling scheme and the multipolar-coupling scheme are considered. The theory replaces the standard concept of mode decomposition which fails for complex permittivities. It enables us to treat the effects of dispersion and absorption in a consistent way and to give a unified approach to the atom-field interaction, without any restriction to a particular interaction regime in a particular frequency range. All relevant information about the dielectric bodies such as form and intrinsic dispersion and absorption is contained in the Green tensor. The application of the theory to the spontaneous decay of an excited atom in the presence of dispersing and absorbing bodies is addressed.
منابع مشابه
Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure
In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...
متن کاملBorn expansion of the Casimir-Polder interaction of a ground-state atom with dielectric bodies
Within leading-order perturbation theory, the Casimir-Polder potential of a ground-state atom placed within an arbitrary arrangement of dispersing and absorbing linear bodies can be expressed in terms of the polarizability of the atom and the scattering Green tensor of the body-assisted electromagnetic field. Based on a Born series of the Green tensor, a systematic expansion of the Casimir-Pold...
متن کاملSpontaneous Decay in the Presence of Absorbing Media
After giving a summary of the basic-theoretical concept of quantization of the electromagnetic field in the presence of dispersing and absorbing (macroscopic) bodies, their effect on spontaneous decay of an excited atom is studied. Various configurations such as bulk material, planar half space media, spherical cavities, and microspheres are considered. In particular, the influence of material ...
متن کاملA Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom
The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...
متن کاملMicroscopic Origin of Casimir-Polder Forces
Abstract. We establish a general relation between dispersion forces. First, based on QED in causal media, leading-order perturbation theory is used to express both the single-atom CasimirPolder and the two-atom van der Waals potentials in terms of the atomic polarizabilities and the Green tensor for the body-assisted electromagnetic field. Endowed with this geometryindependent framework, we the...
متن کامل